Advanced Information COMPUTER SCIENCE

		Paper 1	
			Revision pages
1.1 Systems Architecture	 1.1.1: Architecture of the CPU What actions occur at each stage of the fetch-execute cycle. The role/purpose of each component and what it managers, stores, or controls during the fetch-execute cycle. The purpose of each register, what it stores (data or address). The difference between storing data and an address. 	Purpose of the CPU: (The fetch-execute cycle) Common CPU components and their functions (ALU, CU, cache, registers) Von Neumann architecture (MAR- Memory Address Register), MDR (Memory Data Register), Program Counter and Accumulator.	Pg 2-3
1.2 Memory and Storage	 1.2.1: Primary Storage (Memory) Why computers have primary storage (how this usually consists of RAM/ROM). The difference between RAM and ROM. The purpose of RAM, ROM, Virtual memory. 	The need for primary storage RAM, ROM, Virtual memory	Pg 6-7
	1.2.2 Secondary Storage Why do computers have secondary storage? Differences between each type of storage device/medium. Compare advantages/disadvantages for each storage device.	 Common types of storage Optical Magnetic Solid state Suitable storage devices The advantages and disadvantages of different storage devices and storage media relating to these characteristics. (Capacity, speed, portability, durability, reliability, cost) 	Pg 8-9
	 1.2.3: Units Why data must be stored in binary format. Calculate required storage capacity for a given set of files. Calculate file sizes of sound, images and text files. Sound file size = sample rate x duration (s) x bit depth image file size = colour depth x image height (px) x image width (px) text file size = bits per character x number of characters 	The units of data storage; bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte, petabyte). How data needs to be converted into a binary format to be processed by a computer. Data capacity and calculation of data capacity requirements.	Pg 11
	1.2.4: Data Storage	Numbers:	Pg 12-20

	Conversion of any numbers in these ranges to another number base. The differences between and impact of each character set. The effect on an image size and quality when changing colour depth and resolution. 1.2.5: Compression Advantages and disadvantages of each type of compression.	 Convert denary to binary and vice versa. Binary addition Convert denary to hexadecimal numbers and vice versa. Binary shift Characters: Use of binary to represent characters Character set ASCII Unicode Images: Images are represented by pixels, in binary Metadata Effect of colour depth and resolution Sound How sound can be sampled and stored in digital form The effect of sample rate, duration and bit depth on (the playback quality, the size of a sound file) Need for compression. Lossy and Lossless compression 	Pg 21
1.3 Computer networks, connections and protocols	Effects on the file for each type of compression. 1.3.1: Networks and topologies The tasks performed by each piece of hardware. DNS (Domain Name Server's role in the conversion of a URL to an IP address. 1.3.2: Wired and wireless networks, protocols and layers Compare benefits and drawbacks of wired versus	Types of networks (LAN, WAN) Factors that affect the performance of networks. The hardware needed to connect stand-alone computers into Local Area Networks. The internet as a worldwide collection of computer networks. Modes of connection (wired- ethernet), (wireless- wifi, Bluetooth) Encryption IP addressing and MAC addressing Standards	Pg 23-25 Pg 28-32
1.4 Network Security	drawbacks of wired versus wireless connection. The principle of encryption to secure data across network connections. That different types of protocols are used for different purposes. 1.4.1: threats to computer systems and networks	Standards Common protocols (TCP/IP, HTPP, HTTPS, FTP, POP, IMAP, SMTP) Forms of attack (malware, social engineering brute force attacks, denial of service attacks,	Pg 34

	Threats posed to devices/systems.	data interception and theft, the concept of SQL injection).	
	1.4.2: Identifying and preventing vulnerabilitiesUnderstanding of how to limit the threats posed in 1.4.1.Understanding methods to remove vulnerabilities.	Common prevention methods (penetration testing, anti-malware software, firewalls, user access levels, passwords, encryption, physical security).	Pg 35
1.6 Ethical, legal, cultural and environment al impacts of digital technology	 1.6.1: Ethical, legal, cultural and environmental impact Technology introduces ethical, legal, cultural, environmental and privacy issues. The purpose of each piece of legislation and the specific actions it allows or prohibits. Features of open source and proprietary. 	Impacts of digital technology on wider society. (ethical, legal, cultural, environmental, privacy) Legislation relevant to Computer Science. (The Data Protection Act, Computer Misuse Act, Copyright Designs and Patents Act, Software licenses (is open sources and proprietary)	Pg 40-44

Paper 2			
2.1.1 Computational thinking	Understanding these principles and how they are used to solve problems	 Principles of computational thinking Abstraction Decomposition Algorithmic thinking 	Pg 47
2.1.2 Designing, creating, and refining algorithms	 Produce simple diagrams to show: The structure of a problem Subsections and their links to other subsections Complete, write or refine an algorithm using the techniques listed 	 Identify the inputs, processes, and outputs for a problem Structure diagrams Create, interpret, correct, complete, and refine algorithms using: Flowcharts Reference language/high-level programming language 	Pg 49-53

2.1.3 Searching and sorting algorithms	 Identify syntax/logic errors in code and suggest fixes Create and use trace tables to follow an algorithm Understand the main steps of each algorithm Understand any pre-requisites of an algorithm Apply the algorithm to a data set Identify an algorithm if given the code 	 Identify common errors Trace tables Standard searching algorithms: Binary search Linear search Standard sorting algorithms: Bubble sort Merge sort Insertion sort 	Pg 54-60
2.2.1 Programming fundamentals	Understanding of each technique Recognise and use operators	 The use of variables, constants, operators, inputs, outputs and assignments The use of the three basic programming constructs used to control the flow of a program: Sequence Selection Iteration (count- and condition-controlled loops) The common arithmetic operators The common Boolean operators AND, OR and NOT 	Pg 61-65
2.2.2 Data types	Ability to choose suitable data types for data in each scenario Understand that data types may be temporarily changed through casting, and where this may be useful	 The use of data types including: Integer Real Boolean Character and string Casting 	Pg 66
2.2.3 Additional programming techniques	Ability to manipulate strings, including: Concatenation Slicing Arrays as fixed length or static structures Use of 2D arrays to emulate database tables of a collection of fields, and records The use of functions The use of procedures	 The use of basic string manipulation The use of basic file handling operations: Open Read Write Close The use of records to store data The use of SQL to search for data The use of arrays (or equivalent) when solving problems, including both one-dimensional (1D) and two-dimensional arrays (2D) 	Pg 67-74

2.3.1 Defensive design	The use of the following within functions and procedures: local variables/constants global variables/constants arrays (passing and returning) SQL commands: SELECT FROM WHERE Be able to create and use random numbers in a program Understanding of the issues a programmer should consider ensuring that a program caters for all likely input values Understanding of how to deal with invalid data in a program Authentication to confirm the identity of a user Practical experience of designing input validation and simple authentication (e.g. username and password) Understand why commenting is useful and apply this appropriately	How to use sub programs (functions and procedures) to produce structured code Random number generation Defensive design considerations: • Anticipating misuse • Authentication • Input validation Maintainability: Use of sub programs Naming conventions Indentation Commenting	Pg 78-79
2.3.2 Testing	The difference between testing modules of a program during development and testing the program at the end of production Syntax errors as errors which break the grammatical rules of the programming language and stop it from being run/translated Logic errors as errors which produce unexpected output Normal test data as data which should be accepted by a program without causing errors	The purpose of testing Types of testing: Iterative Final/terminal Identify syntax and logic errors Selecting and using suitable test data: Normal Boundary Invalid/Erroneous Refining algorithms	Pg 80

	Boundary test data as data of the		
	correct type which is on the very		
	edge of being valid		
	Invalid test data as data of the		
	correct data type which should be		
	rejected by a computer system		
	Erroneous test data as data of the		
	incorrect data type which should		
	be rejected by a computer system		
	Ability to identify suitable test		
	data for a given scenario		
	Ability to create/complete a test		
	plan		
2.4.1	Knowledge of the truth tables for	Simple logic diagrams using the operators	Pg 82-83
Boolean Logic	each logic gate	AND, OR and NOT	
		Truth tables	
	Recognition of each gate symbol		
	Understanding of how to create,	Combining Boolean operators using AND, OR	
	complete or edit logic diagrams	and NOT	
	and truth		
	tables for given scenarios	Applying logical operators in truth tables to	
		solve problems	
	Ability to work with more than		
	one gate in a logic diagram		
2.5.1	Knowledge of the truth tables for	Characteristics and purpose of different levels	Pg 84
Languages	each logic gate	of programming	
	Recognition of each gate symbol	language:	
		High-level languages	
	Understanding of how to create,	Low-level languages	
	complete or edit logic diagrams		
	and truth tables for given	The purpose of translators	
	scenarios		
		The characteristics of a compiler and an	
	Ability to work with more than	interpreter	
	one gate in a logic diagram	Common to all and facilities sucilable in an	D. 05
2.5.2 The	Knowledge of the tools that an	Common tools and facilities available in an Integrated Development Environment (IDE):	Pg 85
Integrated Development	IDE provides	Editors	
Environment	How each of the tools and	Error diagnostics	
(IDE)	facilities listed can be used to help	Run-time environment	
(a programmer develop a program	Translators	
	Practical experience of using a		
	range of these tools within at		
	least		
	one IDE		
	l	1	